Antioxidant properties of Krebs cycle intermediates against malonate pro- oxidant activity in vitro: a comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates

ثبت نشده
چکیده

A variety of Krebs cycle intermediaries has been shown to possess antioxidant properties in different in vivo and in vitro systems. Here we examined whether citrate, succinate, malate, oxaloacetate, fumarate and alpha-ketoglutarate could modulate malonate-induced thiobarbituric acid-reactive species (TBARS) production in rat brain homogenate. The mechanisms involved in their antioxidant activity were also determined using two analytical methods: 1) a popular spectrophotometric method (Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95, 351-358.) and a high performance liquid chromatographic (HPLC) procedure (Grotto, D., Santa Maria, L. D., Boeira, S., Valentini, J., Charão, M. F., Moro, A. M., Nascimento, P. C., Pomblum, V. J., Garcia, S. C., 2006. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. Journal of Pharmaceutical and Biomedical Analysis 43, 619-624.). Citrate, malate, and oxaloacetate reduced both basal and malonate-induced TBARS production. Their effects were not changed by pretreatment of rat brain homogenates at 100 degrees C for 10 min. alpha-Ketoglutarate increased basal TBARS without changing malonate-induced TBARS production in fresh and heat-treated homogenates. Succinate reduced basal--without altering malonate-induced TBARS production. Its antioxidant activity was abolished by KCN or heat treatment. Fumarate reduced malonate-induced TBARS production in fresh homogenates; however, its effect was completely abolished by heat treatment. There were minimal differences among the studied methods. Citrate, oxaloacetate, malate, alpha-ketoglutarate and malonate showed iron-chelating activity. We suggest that antioxidant properties of citrate, malate and oxaloacetate were due to their ability to cancel iron redox activity by forming inactive complexes, whereas alphaketoglutarate and malonate pro-oxidant activity can be due to formation of active complexes with iron. In contrast, succinate and fumarate antioxidant activity was probably due to some enzymatic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation

Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...

متن کامل

Adaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation

Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...

متن کامل

Reduction in Aluminum Induced Oxidative Stress by Meloxicam in Rat Brain

Background: Non-steroidal anti-inflammatory drugs (NSAID) have been associated with antioxidant property and have been shown to improve the circulating antioxidant status on daily dosing in different inflammatory conditions. The present study was conducted to investigate the antioxidant role of meloxicam in aluminum induced oxidative stress in rat brain. Methods: In the in vivo experiments, Spr...

متن کامل

Effect of ellagic acid on oxidative stress duo to brain ischemia/hypoperfusion in male rat

Background & Aim: Free radicals are produced in ischemic processes. Nerve damage caused by free radicals may play a role in neurological diseases and antioxidants are protective activity. Ellagic acid is a polyphenol compound with antioxidant properties which is found in fruits like pomegranate, blackberry, and all types of mulberry. This study aimed to evaluate the effect of 14 days of oral ad...

متن کامل

Effect of ellagic acid on oxidative stress duo to brain ischemia/hypoperfusion in male rat

Background & Aim: Free radicals are produced in ischemic processes. Nerve damage caused by free radicals may play a role in neurological diseases and antioxidants are protective activity. Ellagic acid is a polyphenol compound with antioxidant properties which is found in fruits like pomegranate, blackberry, and all types of mulberry. This study aimed to evaluate the effect of 14 days of oral ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013